ANNUAL REPORT

MAPLETON WASTEWATER POLLUTION CONTROL PLANT

FOR THE PERIOD: JANUARY 1, 2021 – DECEMBER 31, 2021

Prepared for the Township of Mapleton by the Ontario Clean Water Agency

Table of Contents

1.	S	System [Description	. 2
2.	lr	nfluent a	and Effluent Monitoring and Comparison to Effluent Objectives and Effluent Limits	. 5
2	.1	Influ	ent (Raw Sewage)	. 5
	2	.1.1	Sampling Frequency: Influent	. 5
	2	.1.2	Influent (Raw Sewage) Monitoring Data	. 6
	2	.1.3	Historical Trends of Influent (Sewage) Characteristics and Influent Flowrates	. 6
2	.2	Efflu	ent and Flowrate	. 9
	2	.2.1	Sampling Frequency: Effluent	. 9
	2	.2.2	Effluent Monitoring Data	. 9
	2	.2.3	Effluent Objectives and Limits	10
	2	.2.4	Comparison of Data to Effluent Objectives and Effluent Limits	11
	2	.2.5	Effluent Flow and Maximum Discharge Rates	11
2	.5	Ove	rview of Success and Adequacy of the Works;	14
3.	D	Deviatior	n from the Monitoring Schedule	14
4.	С	Operatin	g Problems and Corrective Actions	14
5.	N	/lajor Ma	aintenance Activities	14
6.	E	ffluent (Quality Assurance and Control	15
7.	С	Calibratio	on and Maintenance Procedures	15
8.	E	fforts a	nd Results Achieved in Meeting Effluent Objectives	16
9.	S	Sludge G	Generation	17
10.		Compl	aints	17
11.		• •	ss, Spill or Abnormal Discharge Events	
12.			of Modifications	
13.		Bypas	s/Overflow Proposed Elimination Projects	18
14.		Chang	es/updates to Scheduled Construction/Commissioning	18

Appendix A: 2021 Performance Assessment Report

Appendix B: 2022 Sampling Schedule

Appendix C: 2021 Calibration Reports

Appendix D: 2021 By-pass/Overflow/Spill Incident Report

1. System Description

The Mapleton wastewater facility receives residential and commercial wastewater and provides a level of treatment to meet the "Environmental Compliance Approval (ECA) #1391-B38PLA" for discharging into the Conestogo River.

Moorefield

Low-Pressure Sanitary Sewage Collection System (Off-site)

- Approximately 160 individual packaged grinder pump stations outside of the properties to be serviced including service laterals;
- Low-pressure collection sewers on Robb Street, Carson Street, Adam Brown Street, Maudsley Street, Ball Avenue, McGivern Street, Hillwood Drive, Booth Street West and Eight Concession Road;

Booth Street Sanitary Pumping Station (Off-site)

- A sewage pumping station located on Booth Street consists of a 2.4 m diameter by 4.5 m deep wet well equipped with two (2) submersible sewage pumps (one duty and one standby) each having a rated capacity of 14.14 L/s at 47 m TDH and an emergency overflow outlet;
- A 150 m diameter forcemain along Booth Street East, Eighth Concession Road and Mapleton WPCP Access Road discharging to the influent structure of the sewage treatment plant;
- A 50 kW outdoor diesel generator set.

<u>Drayton</u>

Sanitary Sewage Collection System (Off-site)

Sanitary sewer on Mill Street, High Street, Smith Drive, Spring Street, Main Street, Wood Street, Robin Drive, John Street, Union Street, Edward Street, Elm Street, Wellington Street, Easement West of Wellington Street, King Street, Queen Street and Wortley Street, Conestoga Drive, Hillview Drive, Pine Street, Maple Street, Green Street, Andrew Drive, Dales Drive, Parkside Street, Andrews Drive West, Faith Drive, River Run Road, Riverview Drive, Bedell Drive Pioneer Drive.

Sewage Pumping Station and Forcemain (Off-site)

- A sewage pumping station located on the north side of Mill Street consists of a wet well approximately 110 m west of the west limit of Wellington Street with a wet well with two (2) sewage pumps (one duty and one standby) each rated at 34.0 L/s at a TDH of 42.0 m;
- A forcemain to the waste stabilization ponds, emergency bypass connection on the discharge forcemain;
- A 60 kW standby diesel generator and emergency station overflow;

Stabilization Pond:

 A 21.2 ha waste stabilization pond system with (2) treatment cells operated in series and three (3) effluent treatment/storage cells operated in parallel or series with individual operating depths (exclusive of sludge storage bottom zones and freeboard), areas and volumes as listed in Table 1:

Table 1.

Parameters	Function	Operating Depth (m)	Surface Area (ha)	Operating Volume (m ³)
Cell 2	Treatment – Primary Cell	1.825	3.1	60,500
Cell 1	Treatment – Secondary Cell	1.825	3.2	62,100
Cell 3	Storage/treatment	2.425	5.5	131,700
Cell 4A	Storage/treatment	2.600	3.4	77,600
Cell 4B	Storage/treatment	2.600	6.0	140,700
		Total	21.2	472,600

- Influent works to Cell #2, interconnecting structures between lagoon cells;
- A primary gravity flow control structure (flow control structure A) with adjustable weir control, receiving influent from Cell #1 and with valved inlet/outlet pipes to Cells #3, 4A and 4B, and outlet pipe to Manhole 2;
- A secondary gravity flow control structure (flow control structure B) with valved inlet/outlet pipes to Cells 4A and 4B and the primary flow control chamber;
- A fine bubble aeration system for Cell #2 comprising two high speed blowers (duty/standby) having a capacity of 680 m³/h at 45 kPa were decommissioned and removed in 2017, and two Positive Displacement Blowers (duty/standby), were installed. Each blower is 30 HP and is equipped with its own VFD's with the existing Positive Displacement Blower as back up. The feeder lines and diffuser tubes at the bottom of the cell are perpendicular to the direction of sewage flow;
- A compressed air distribution system in Cell #3 comprising a 25 hp compressor/blower, air header and distribution laterals for minimizing ice formation and to improve alum mixing;
- Effluent works and 600 mm diameter sewer to the stabilization pond effluent pumping station;

Stabilization Pond Effluent Pumping Station:

- A 3.4 m by 3.3 m by 6.0 m deep wet well, including a bypass/overflow chamber with a bottom sluice gate and an overflow weir, equipped with three (3) submersible pumps (two duty and one shelf spare) with variable speed 3 hp motors, each having a capacity of 23.1 L/second at 4.0 m TDH, with a 150 mm diameter pipe discharging stabilization pond effluent to a common trough at the top of the wet well;
- One (1) 200 mm diameter gravity flow pipe conveying stabilization pond effluent from the trough to the filtration building;
- A 600 mm diameter emergency bypass/overflow sewer from the pumping station to the final effluent manhole;

Supplementary Treatment Systems:

Phosphorus Removal

- A 4.3 m x 6.1 m alum building with a 15,000 L alum storage tank and two (2) 7.1 L/h capacity metering pumps to dose alum to flow control structure A located upstream of the storage lagoons;
- A new alum dosing system with a duplex pump control panel and two (2) metering pumps (duty and standby arrangement), each capable of handling 15L/hr;
- An insulated alum dosing pipe with fittings and other appurtenances;
- Installation of the alum dosing point within the filter feed pumping station wet well;
- Installation of a pipe mixer (static flow mixer) within the existing stainless steel filter feed pipe and necessary connections with fittings to the existing 200 mm diameter stainless steel filter feed pipe.

Supplementary Treatment Systems:

Phosphorus Removal

secondary pre-filtration alum dosing system to facilitate additional phosphorus removal, housed in an alum building, including:

- one (1) 9,000 L alum storage tank;
- an alum dosing system with a duplex pump control panel and two (2) metering pumps (duty and standby arrangement), each capable of handling 15 L/hr;
- an insulated alum dosing pipe with fittings and other appurtenances;
- installation of the alum dosing point within the filter feed pumping station wet well;
- installation of a pipe mixer (static flow mixer) in a precast chamber within the existing stainless steel filter feed pipe and necessary connections with fittings to the existing 200 mm diameter stainless steel filter feed pipe.

Post-Secondary Treatment System:

Sand Filters

- One (1) metering chamber complete with 200 mm diameter inlet pipe from the Stabilization Pond Effluent Pumping Station, a 200 mm diameter magnetic flowmeter and a 200 mm outlet pipe discharging to the filter influent channel described below;
- One (1) filter influent channel 690 mm wide by 2.5 m deep equipped with a stainless steel screen and guide, five (5) 200 mm diameter filter inlet pipes with gate valves and one (1) 200 mm diameter overflow pipe discharging to the filter effluent channel;
- Five (5) continuous backwash upflow sand filters, each having a 4.65 m² filtration area, 2.0 m depth coarse media, with design filtering capacity of 800 m³/day, complete with headloss gauges, air-lift pumps for rejection/backwashing of filters to the reject wet well and effluent weirs;
- A 250 mm diameter filtered effluent pipe and a 500 mm wide by 1.6 m deep effluent channel for the disinfection system described below;
- Two (2) air compressors with 7.5 hp motors, each having an output capacity of 46 m³/h at 690 kPa pressure discharging to a common air reservoir to provide air to the air lift pumps;
- A 2.16 m by 1.7 m, 4.7 m deep reject/backwash wastewater wet well equipped with two (2) submersible pumps with 3 hp integral motors (one duty and one standby), each having a capacity of 13.5 L/s at 10.7 m TDH, to pump filter reject/backwash wastewater to Cell #2 of the stabilization pond system via an approximately 37.0 m long 100 mm diameter forcemain;

Disinfection System:

UV Disinfection

Two (2) ultraviolet radiation units installed in series in the effluent channel of the filtration building, designed to handle a peak flow of 4,000 m³/d and capable of producing a minimum dose of

36 mW.sec/cm² in the effluent with an ultraviolet transmittance of 65%, for the disinfection of effluent;

Final Effluent Flow Measurement and Sampling Point:

• One (1) 200 mm dia magnetic flowmeter and associated pipework in the effluent discharge system.

Final Effluent Disposal Facilities:

- A reinforced concrete cascade aerator including a 100 mm diameter drain/bypass pipe to provide adequate aeration to the filtered effluent prior to discharging to the Conestogo River,
- One (1) 300 mm diameter effluent discharge pipe from the cascade aerator to the final effluent manhole;
- One (1) 600 mm diameter final effluent pipe to the outfall structure at the Conestoga River

An overview of Mapleton Wastewater Pollution Control Plant can be found in Table 2:

able 2. Mapleton Wastewater Pollution Control Plant Overview				
Facility Name	Mapleton Wastewater Pollution Control Plant			
Facility Type	Facultative Lagoons, Aerated Lagoon (Cell #2), Alum addition/phosphorous removal, sand			
filters, sewer system and UV Disinfection, and two pumping stations.				
Plant Classification	WWTI			
Works Number	120001782			
Design Capacity	900 m³/day			
Receiving Water	Conestogo River			
Environmental Compliance Approval	ECA# 1391-B38PLA - August 2, 2018			

 Table 2.
 Mapleton Wastewater Pollution Control Plant Overview

2. Influent and Effluent Monitoring and Comparison to Effluent Objectives and Effluent Limits

2.1 Influent (Raw Sewage)

As per Section 11(4)(a) of ECA 1391-B38PLA, a summary and interpretation of all Influent monitoring data, and a review of the historical trend of the sewage characteristics and flow rates is required.

2.1.1 Sampling Frequency: Influent

Samples of raw sewage (influent) are collected and analyzed on a regular basis. The sampling types and frequencies are summarized in Table 3. The sampling frequencies meet the requirements set out in Schedule D of ECA 1391-B38PLA.

Table 3.	Raw S	ewage	Monitoring -	Sampling	Frequencies
----------	-------	-------	--------------	----------	-------------

Parameter	Sample Type	Frequency
BOD ₅ *	Grab	Bi-Weekly
Total Suspended Solids*	Grab	Bi-Weekly
Total Phosphorous*	Grab	Bi-Weekly
Total Kjeldahl Nitrogen*	Grab	Bi-Weekly

*Refer to Appendix A for monthly sample results.

2.1.2 Influent (Raw Sewage) Monitoring Data

The following parameters in Table 4 do not have limits or objectives but are monitored on a regular basis (see Section 2.1.1 for sampling frequency) as required by Schedule D of ECA 1391-B38PLA. Table 4 summarizes the influent monitoring data for the reporting period.

 Table 4.
 Raw Sewage Monitoring Parameters as required by ECA 1391-B38PLA for Mapleton Wastewater Pollution Control

 Plant, 2021
 Plant, 2021

Parameter	Average	Minimum	Maximum
BOD₅* (mg/L)	299.74	168.50	426.50
Total Suspended Solids* (mg/L)	290.18	139.50	413.00
Total Phosphorous* (mg/L)	7.12	5.76	10.56
Total Kjeldahl Nitrogen* (mg/L)	60.53	46.70	76.05

*Refer to Appendix A for monthly sample results.

2.1.3 Historical Trends of Influent (Sewage) Characteristics and Influent Flowrates

Sewage Characteristics

The below graph shows historical raw Biochemical Oxygen Demand (BOD₅) trending from 2017 to 2021. A review of the trends from the last 5 years for BOD_5 shows that the average BOD_5 concentration in the raw sewage had fluctuated year per year. A continued decrease in BOD_5 loading was observed in 2021 comparatively to previous years.

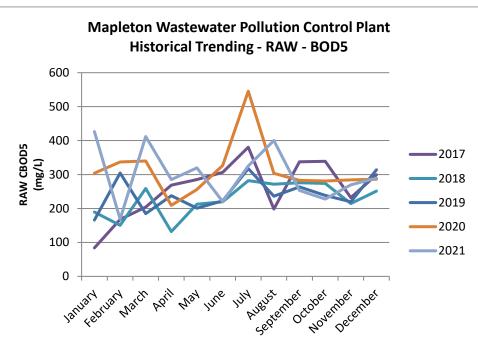
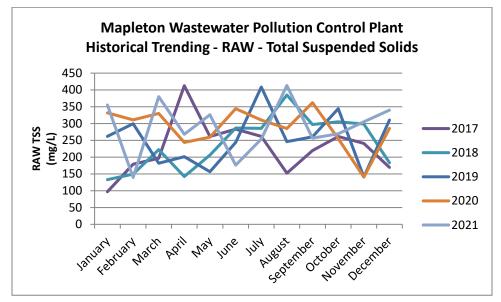



Figure 1.

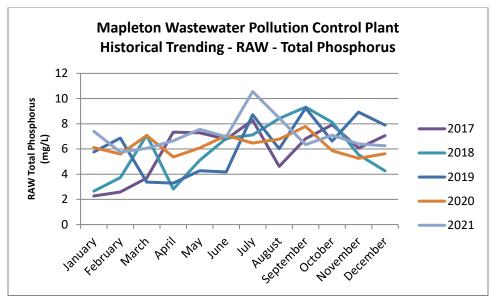
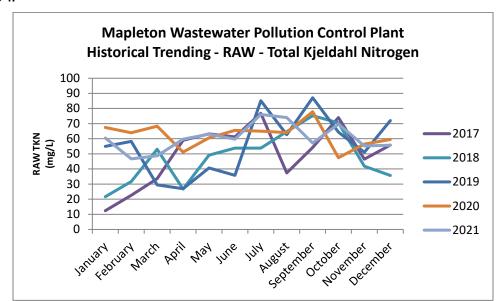

The below graph shows the historical raw Total Suspended Solids trending from 2017 to 2021. A review of the current 2021 trends versus the last 5 years has shown a slight increase in loadings of Total Suspended Solids for the parts of the year.

Figure 2.



The below graph shows the historical raw Total Phosphorus trending from 2017 to 2021. A review of the current 2021 trends versus the last 5 years has shown a slight increase in loadings of phosphorus for the parts of the year.

The below graph shows the historical raw Total Kjeldahl Nitrogen trending from 2017 to 2021. A review of the 2021 trends versus the last 5 years for TKN has shown a slight increase in loadings concentrations to previous years.

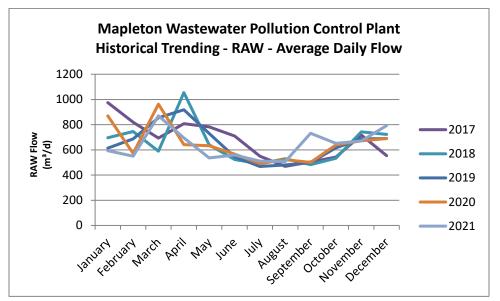


Figure 4.

Influent Flow:

The below graph shows historical raw flow trending from 2017 to 2021. The graph shows that the average flows have remained fairly consistent. There is a consistent peak in the months of March-April which would represent warmer temperatures resulting in snow melt and seasonal precipitation.

Figure 5.

The total raw sewage volume of wastewater treated in 2021 was 233,343.00 m³. The annual average daily flow of raw sewage was 638.84 m³/day was 70.98 % of the rated capacity (900 m³/day). The maximum peak flow of 2,008.00 m³/day occurred in March due to higher seasonal temperatures which resulted in rapid snow melt as well as heavy rainfall. This represents a peak flow of 2.23 times the rated capacity.

2.2 Final Effluent Monitoring and Flow Rates

As per Section 11(4)(b) of ECA 1391-B38PLA, a summary and interpretation of all Final Effluent monitoring data, including concentration, flow rates, loading and a comparison to the designed objectives and compliance limits in this approval, including an overview of the success and adequacy of the Works is required.

2.2.1 Sampling Frequency: Effluent

Samples of effluent are collected and analyzed on a regular basis. The sampling types and frequencies are summarized in Table 5. The sampling frequencies meet the requirements set out in Schedule C of ECA 1391-B38PLA.

Parameters	Sample Type	Frequency
CBOD₅*	24-hour Composite	Weekly
Total Suspended Solids*	24-hour Composite	Weekly
Total Phosphorous*	24-hour Composite	Weekly
Total Ammonia Nitrogen*	24-hour Composite	Weekly
E. Coli*	Grab	Weekly
рН	Grab/Probe	Weekly
Temperature	Grab/Probe	Weekly
Unionized Ammonia	Calculated	Weekly

Table 5. Effluent Sampling Monitoring - Sampling Frequencies

*Refer to Appendix A for monthly sample results.

2.2.2 Effluent Monitoring Data

 Table 6.
 Effluent Monitoring Parameters as required by ECA 1391-B38PLA for Mapleton Wastewater Pollution Control Plant, 2021

Parameters	Average	Minimum	Maximum	Average Annual Loading
CBOD ₅	2.30	2.00	3.00	6.21
Total Suspended Solids	4.05	2.00	5.00	10.66
Total Phosphorus	0.106	0.055	0.155	0.279
Total Ammonia Nitrogen	0.143	0.100	0.267	0.380
E.Coli	2.69	1.59	5.85	-
рН	8.11	7.99	8.26	-
Temperature	7.32	0.80	16.50	-
Unionized Ammonia	0.005	0.001	0.016	-

*Refer to Appendix A for monthly sample results.

2.2.3 Effluent Objectives and Limits

The effluent objectives as per Schedule B of ECA 1391-B38PLA for the Mapleton Wastewater Pollution Control Plant are:

Table 7. Effluent Objectives as per Schedule B of ECA 1391-B38PLA

Effluent Parameter	Concentration Objective (mg/L)
CBOD ₅	5.0
Total Suspended Solids	15.0
Total Ammonia Nitrogen	3.0
Total Phosphorous	0.25
E.Coli	100 CFU/100mL
	(Monthly Geometric Mean Density)
рН	6.5-8.5 inclusive

The effluent limits that are to be met as per Schedule C of ECA 1391-B38PLA for the Mapleton Wastewater Pollution Control Plant are found in Table 8. Any exceedance with the limits found in Table 8 constitutes a non-compliance.

Table 8. Effluent Limits as per Schedule C of ECA 1391-B38PLA

Effluent Parameter	Concentration Limit (mg/L)
CBOD ₅	
(April, October)	7.5
(March, November, December)	10.0
Total Suspended Solids	25.0
Total Ammonia Nitrogen	5.0
Total Phosphorous	0.42
E.Coli	200 CFU/100mL
	(Monthly Geometric Mean Density)
рН	6.0-9.5 Inclusive

2.2.4 Comparison of Data to Effluent Objectives and Effluent Limits

Analytical and monitoring data for the Mapleton Wastewater Pollution Control Plan is stored in OCWAs data management system (WISKI). Annual and monthly averages for flows, CBOD₅, Total Suspended Solids, Total Phosphorous, Nitrogen-series and E.coli can be found in Appendix A. A comparison of analytical data from effluent samples to the effluent objectives and effluent limits shown in the below tables:

Concentrations and Loading

Table 9.

		CBOD₅				
	Monthly Average Concentration (mg/L)	Within Objectives (5.00 mg/L)	Within Limits (7.50 mg/L Apr., Oct) (10.00 mg/L Mar.,Nov.,Dec.)	Monthly Average Loading (kg/d)		
January	-	-	-	-		
February	-	-	-	-		
March	2.00	Yes	Yes	5.53		
April	2.00	Yes	Yes	5.11		
May	-	-	-	-		
June	-	-	-	-		
July	-	-	-	-		
August	-	-	-	-		
September	-	-	-	-		
October	3.00	Yes	Yes	9.37		
November	2.50	Yes	Yes	6.66		
December	2.00	Yes	Yes	4.40		

Table 10.

		Total Sus	pended Solids	
	Monthly Average Concentration (mg/L)	Within Objectives (15.00 mg/L)	Within Limits (25.00 mg/L)	Monthly Average Loading (kg/d)
January	-	-	-	-
February	-	-	-	-
March	2.00	Yes	Yes	5.53
April	4.50	Yes	Yes	11.49
May	-		-	-
June	-	-	-	-
July	-	-	-	-
August	-	-	-	-
September	-	-	-	-
October	4.25	Yes	Yes	13.28
November	4.50	Yes	Yes	11.99
December	5.00	Yes	Yes	11.00

Table 11.

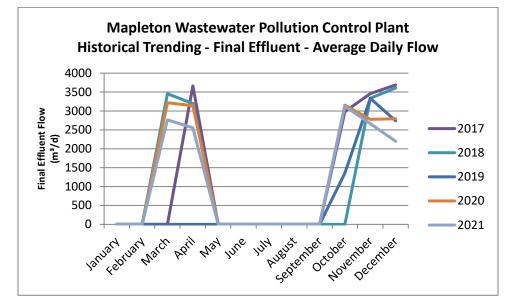
		Total P	hosphorus	
	Monthly Average Concentration (mg/L)	Within Objectives (0.25 mg/L)	Within Limits (0.42 mg/L)	Monthly Average Loading (kg/d)
January	-	-	-	-
February	-	-	-	-
March	0.08	Yes	Yes	0.22
April	0.06	Yes	Yes	0.14
Мау	-	-	-	-
June	-	-	-	-
July	-	-	-	-
August	-	-	-	-
September	-	-	-	-
October	0.13	Yes	Yes	0.40
November	0.11	Yes	Yes	0.29
December	0.16	Yes	Yes	0.34

Table 12.

	Total Ammonia Nitrogen (Ammonia Nitrogen + Ammonium Nitrogen)										
	Monthly Average Concentration (mg/L)	Within Objectives (3.0 mg/L)	Within Limits (5.0 mg/L)	Monthly Average Loading (kg/d)							
January	-	-	-	-							
February	-	-	-	-							
March	0.27	Yes	Yes	0.74							
April	0.10	Yes	Yes	0.26							
May	-	-	-	-							
June	-	-	-	-							
July	-	-	-	-							
August	-	-	-	-							
September	-	-	-	-							
October	0.10	Yes	Yes	0.31							
November	0.10	Yes	Yes	0.27							
December	0.15	Yes	Yes	0.33							

Table 13.

		E.coli	
	Monthly Geometric Mean Density (CFU/100mL)	Within Objectives (100 CFU/100mL)	Within Limits (200 CFU/100mL)
January	-	-	-
February	-	-	-
March	1.59	Yes	Yes
April	2.00	Yes	Yes
Мау	-	-	-
June	-	-	-
July	-	-	-
August	-	-	-
September	-	-	-
October	2.00	Yes	Yes
November	5.85	Yes	Yes
December	2.00	Yes	Yes


Table 14.

			рН	
	Minimum	Maximum	Within Objectives (6.5 - 8.5)	Within Limits (6.0 – 9.5)
January	-	-	-	-
February	-	-	-	-
March	8.10	8.16	Yes	Yes
April	7.99	8.16	Yes	Yes
Мау	-	-	-	-
June	-	-	-	-
July	-	-	-	-
August	-	-	-	-
September	-	-	-	-
October	8.00	8.24	Yes	Yes
November	8.02	8.26	Yes	Yes
December	8.12	8.14	Yes	Yes

2.2.5 Final Effluent Flow and Maximum Discharge Rates

Effluent Flow: The below graph shows historical final effluent flow trending from 2017 to 2021. The graph shows that during the discharge periods the final effluent average flows have remained fairly consistent between the discharge periods.

Figure 6.

The total effluent volume of wastewater treated in 2021 was 274,535.43 m³ with an annual average daily flow of effluent was 2,660.82 m³/day. See table 15 for comparison of maximum daily effluent flow to the maximum final effluent discharge rates as per Schedule C.

Table 15.

2022	Monthly Average Daily Effluent Flow	Monthly Average Daily Effluent Flow Limit
2022	(m ³)	(m³/day)
March	2,763.47	2,599
April	2,552.84	4,000
October	3,123.54	233
November	2,664.71	1,854
December	2,199.56	4,000

*As per section Section 8(5) The Owner shall operate the Works such that discharge of Final Effluent from the Works is conducted on a seasonal discharge basis with the effluent being discharged only during the months at the rates as specified in Schedule C. However, discharges in excess of these daily discharges is allowed if the minimum 10:1 of the streamflow to daily discharge rate for the applicable period of that design streamflow occurs, based on actual measurements of flow rate in the Conestogo River.

2.5 Overview of Success and Adequacy of the Works;

The annual average effluent TSS concentration was 4.05 mg/L with a removal efficiency of >98.32%. The annual average effluent Total Phosphorus concentration was 0.106 mg/L with a removal efficiency of >97.52%.

The bacteriological quality of the effluent complied with the environmental compliance approval requirement of <200 colony forming units per 100 mL sample. The annual geometric mean density of organisms for 2021 was 2.69 per 100 mL, indicating extremely effective effluent disinfection.

3. Deviation from the Monitoring Schedule

As per Section 11(4)(c) of ECA 1391-B38PLA, a summary of any deviation from the monitoring schedule and reasons for the current reporting year and a schedule for the next reporting year is required.

Table 16.

Date	Reason for Deviation
August 20, 2021	Raw sample taken 1 day later than scheduled – Delayed due to operational issues
September 3, 2021	Raw sample taken 1 day later than scheduled - Delayed due to operational issues
September 29, 2021	Raw sample taken 1 day earlier than scheduled – Due to scheduled contract work
December 22, 2021	Raw sample taken 1 day earlier than scheduled due to Stat Holidays/Lab closures

Refer to Appendix B the schedule for the next reporting year (2022).

4. Operating Problems and Corrective Actions

As per Section 11(4)(d) of ECA 1391-B38PLA, a summary of all operating issues encountered and corrective actions taken is required.

There were no operating problems encountered or corrective actions required at the Mapleton Wastewater Pollution Control Plant during 2021 that affected the quality of the effluent leaving the plant. All repairs/maintenance can be found in Section 5 of this report.

5. Major Maintenance Activities

As per Section 11(4)(e) of ECA 1391-B38PLA, a summary of all normal and emergency repairs and maintenance activities carried out on any major structure, equipment, apparatus or mechanism forming parts of the Works is required.

For 2021, major maintenance activities that occurred include:

- Air Compressor annual inspection/maintenance
- Pumps and MCC Panel inspections
- Generator inspection
- Replaced faulty air lift on sand filter
- Annual wet well pumps/influent pumps maintenance
- Flow Meter calibrations
- Wet Well cleanout
- Check valve balls replaced at Drayton Sewage PS
- Sewage Pump #2 repairs
- Drayton PS forceman weld repair
- Flushing and CCTV in collection system
- Air relief emergency repair
- 2 valves repaired in mixing chamber

Plant maintenance, including non-scheduled maintenance is monitored using Maximo Workplace Management System. All routine and preventative maintenance was conducted as scheduled in 2021.

6. Effluent Quality Assurance and Control

As per Section 11(4)(f) of ECA 1391-B38PLA, a summary of any effluent quality assurance or control measures undertaken is required:

All laboratory analyzed raw sewage and effluent samples (Section 2.1.1 and Section 2.2.1) are analyzed by SGS Canada Inc., which is an ISO 17025 accredited laboratory. In-house tests are conducted for monitoring purposes by licensed operators using standardized methods. The results from in-house tests are used to determine treatment efficiency and to effectively maintain process control. Calibrations and preventative maintenance are performed on facility equipment and monitoring equipment, see Section 5 for more details. In addition to sample analysis, preventative maintenance is scheduled for equipment at the sewage treatment plant and pumping stations at regular frequency (frequency depends on the equipment and type of maintenance). Maintenance activities are scheduled in the work management system Maximo.

Operation by Licensed Operators: This sewage system is operated and maintained by the OCWA's licensed staff. The mandatory licensing program for operators of sewage treatment facilities in Ontario is regulated under the Ontario Water Resources Act (OWRA) Ontario Regulation 129/04. Licensing means that an individual meets the education and experience requirements and has successfully passed the certification exam.

The following are licensed operators who operated this facility during 2021 with current license classification, license numbers and license expiry dates.

7. Calibration and Maintenance Procedures

As per Section 11(4)(g) of ECA ECA 1391-B38PLA, a summary of the calibration and maintenance carried out on all Influent and Final Effluent monitoring equipment to ensure that the accuracy is within the tolerance of that equipment as required in this Approval or recommended by the manufacturer is required.

All in-house monitoring equipment is calibrated/verified as per manufacturer's recommendations. Monitoring and metering equipment is also calibrated by a third party on an annual basis. Preventative maintenance is scheduled for all equipment at the sewage treatment plant and pumping stations at regular frequency (frequency depends on the equipment and type of maintenance). Maintenance activities are scheduled within the work management system Maximo, upon completion, Operators set the work order to complete. On a monthly basis, preventative work orders are reviewed for completion.

Indus Controls was contracted to calibrate flow measuring equipment on September 13, 2021. Copies of these calibration reports can be found in Appendix C of this report.

8. Efforts and Results Achieved in Meeting Effluent Objectives

As per Section 11(4)(h) of ECA 1391-B38PLA, a summary of efforts made to achieve the design objectives in this Approval, including an assessment of the issues and recommendations for pro-active actions if any are required under the following situation:

i. When any of the design objectives is not achieved more than 50% of the time in a year, or there is an increasing trend in deterioration of Final Effluent quality;

The Mapleton WWTP was able to achieve final effluent parameter design objectives (refer to Table 7) 100% of the time in the year. The CBOD₅, TSS, TP, TAN, E.Coli and pH were within the Effluent Limits 100% of the time during the reporting period. Based on the data, the final effluent was within the Effluent Objectives the majority of the time and there appears to be no increased trend in deterioration of final effluent quality.

During the reporting period, operations staff regularly completed visual inspections of final effluent samples and found the effluent to be essentially free of floating and settleable solids. The final effluent did not appear to contain oil and no visible film, sheen, foam or discolouration were observed.

ii. When the Annual Average Daily Influent Flow reaches 80% of the Rated Capacity;

During the reporting period the annual average daily influent flow did not exceed 80% of the rated capacity. The annual average daily flow of raw sewage in 2021 was 70.98 % (638.84 m³/day) of the rated capacity (900 m³/day). As this Average Daily Influent Flow is approaching 80% of the Rated Capacity, the Owner of the system was made aware of the increased capacity required in the future. Currently, capacity upgrades are being investigated.

Condition 6 is imposed "to establish non-enforceable effluent quality objectives which the Owner is obligated to use best efforts to strive towards on an ongoing basis. These objectives are to be used as a mechanism to trigger corrective action proactively and voluntarily before environmental impairment occurs and before the compliances limits of Condition 6 are exceeded."

OCWA as the Operating Authority (on behalf of the Owner) has made best efforts to stay within the Effluent Objectives in the ECA. These efforts are supported through:

- Continuous monitoring equipment
- Regular plant inspections/checks
- In-house sampling and testing
- Laboratory (3rd party) analysis of influent and effluent samples
- Data review
- Process optimization and adjustments (as required)
- Scheduled/preventative maintenance
- Repairs as necessary

A summary of the effluent quality in comparison to the effluent objectives can be found in Tables 9-13. These results show that sewage treatment operations for 2021 provided effluent quality that was within all effluent objectives outlined in the ECA and minimized environmental impairment.

9. Sludge Generation

As per Section 11(4)(i) of ECA 1391-B38PLA, an estimate of sludge volumes in the lagoon cells. Sludge volume is to be measured every five (5) years, but may be estimated in the interim years. A summary of disposal locations and volumes of sludge disposed of must also be provided if sludge was disposed of during the reporting period is required

There was no sludge hauled from the lagoon system in 2021. Currently, the volume of sludge in Cell #1 is being investigated for removal and haulage. It is proposed to be cleaned out during the late Summer of 2022.

The estimate sludge volume in the lagoon cells

Table 17.

Cell	Estimated Sludge Volume (m ³)
Cell 1	800
Cell 2	500
Cell 3	220
Cell 4A	125
Cell 4B	100

10. Complaints

As per Section 11(4)(j) of ECA 1391-B38PLA, a summary of any complaints received during the reporting period and any steps taken to address the complaints is required.

A standard operating procedure (SOP) is in place for addressing complaints received from the community. All complaints are addressed and documented in the facility logbook. Community complaint information is entered in OCWA's electronic database system "WMS Maximo". This system contains all the required information and history of all complaints.

There were no complaint registered in 2021 for the reporting period.

11. By-pass, Spill or Abnormal Discharge Events

As per Section 11(4)(k) of ECA 1391-B38PLA, a summary of all By-pass, Overflows, other situations outside Normal Operating Conditions and spills within the meaning of Part X of EPA and abnormal discharge events is required.

One spill event occurred during the 2021 reporting period. On June 15, 2021 a rotted air relief valve within a manhole located between the driveways of the farmer and the lagoon access caused raw sewage to collect in the manhole and spill. Please refer to Appendix D for Environmental Incident Report and Notifications.

12. Notice of Modifications

As per Section 11(4)(I) of ECA 1391-B38PLA, a summary of all Notice of Modifications to Sewage Works completed under Paragraph 1.d. of Condition 10, including a report on status of implementation of all modification is required.

There were no modifications made during the reporting period to the Mapleton Wastewater Pollution Control Plant which would require a Notice of Modifications be submitted to the Water Supervisor.

13. Bypass/Overflow Proposed Elimination Projects

As per Section 11(4)(m) of ECA 1391-B38PLA, a summary of efforts made to achieve conformance with Procedure F-5-1 including but not limited to projects undertaken and completed in the sanitary sewer systems that result in overall Bypass/Overflow elimination including expenditures and proposed projects to eliminate Bypass/Overflows with estimated budget forecast for the year following that for which the report is submitted is required.

The Mapleton Wastewater Pollution Control Plant has not had bypass/overflow occurrences during this reporting period. Therefore this doesn't propose any future occurrences which don't require a project/expenditure to eliminate bypass/overflows.

14. Changes/updates to Scheduled Construction/Commissioning

As per Section 11(4)(n) of ECA 1391-B38PLA, any changes or updates to the schedule for the completion of construction and commissioning operation of major process(es)/equipment groups in the Proposed Works is required.

The Proposed Works reached substantial completion as of November 15, 2018.

2021 Annual Performance Report Mapleton Water Pollution Control Plant ECA# 1391-B38PLA August 2, 2018

Appendix A

Performance Assessment Report

2021

Lagoon 274.535 Drayton 206.124 Moorefield 27.219

Ontario Clean Water Agency Performance Assessment Report Wastewater/Lagoon

From: 01/01/2021 to 31/12/2021

Report extracted 02/07/2022 12:35 Facility: [6093] DRAYTON WASTEWATER TREATMENT LAGOON Works: [120001782]

	01/2021	02/2021	03/2021	04/2021	05/2021	06/2021	07/2021	08/2021	09/2021	10/2021	11/2021	12/2021	<total></total>	<avg></avg>	<max></max>	<criteria></criteria>
Flows:																
Raw Flow: Total - Raw Sewage Drayton (m ³)	16109.00	13261.00	24152.00	18654.00	14497.00	14792.00	13762.00	13512.00	19613.00	17947.00	17757.00	22068.00	206124.00			
Raw Flow: Total - Raw Sewage Flow from Moorefield (m	2276.00	2131.00	2829.00	2195.00	2129.00	1977.00	2064.00	2194.00	2334.00	2243.00	2347.00	2500.00	27219.00			
Raw Flow: Avg - Raw Sewage Drayton (m ³ /d)	519.65	473.61	779.10	621.80	467.65	493.07	443.94	435.87	653.77	578.94	591.90	711.87		564.26		750.0
Raw Flow: Avg - Raw Sewage Flow from Moorefield (m ³	73.42	76.11	91.26	73.17	68.68	65.90	66.58	70.77	77.80	72.35	78.23	80.65		74.58		
Raw Flow: Max - Raw Sewage Drayton (m ³ /d)	729.00	861.00	1872.00	1631.00	683.00	1282.00	654.00	697.00	1833.00	1125.00	796.00	1507.00			1872.00	
Raw Flow: Max - Raw Sewage Flow from Moorefield (m ³	117.00	122.00	151.00	93.00	94.00	103.00	86.00	96.00	152.00	112.00	104.00	143.00			152.00	
Eff. Flow: Total - Final Effluent (m ³)	111.00	122.00	66323.20	25528.40	04.00	100.00	00.00	00.00	102.00	81212.09	77276.56	24195.18	274535.43		102.00	
Eff. Flow: Avg - Final Effluent (m ³ /d)			2763.47	2552.84						3123.54	2664.71	2199.56		2660.82	1581.0 - 3	154.0 - 233.0 - 1754.0 - 4000.
Eff. Flow: Max - Final Effluent (m ³ /d)			3572.20	3286.60						3375.28	3033.80	2491.89			3572.20	
Raw Flow: Monthly Total - Raw Sewage Total (m ³)	18385.00	15392.00	26981.00	20849.00	16626.00	16769.00	15826.00	15706.00	21947.00	20190.00	20104.00	24568.00	233343.00			
Raw Flow: Monthly Avg - Raw Sewage Total (m³/d)	593.06	549.71	870.35	694.97	536.32	558.97	510.52	506.65	731.57	651.29	670.13	792.52		638.84		
Raw Flow: Monthly Max - Raw Sewage Total (m ³ /d)	836.00	965.00	2008.00	1697.00	756.00	1385.00	728.00	781.00	1978.00	1225.00	877.00	1650.00			2008.00	
Carbonaceous Biochemical Oxygen Demand: CBOD:																
Eff: Avg cBOD5 - Final Effluent (mg/L)			< 2.000 <	2.000						3.000	< 2.500	< 2.000	<	2.300	3.000	0 - 7.5 - 7.5 - 10.0 - 10.0
Eff: # of samples of cBOD5 - Final Effluent (mg/L)			3	2						4	4	2	15			
Loading: cBOD5 - Final Effluent (kg/d)			< 5.527 <	5.106						9.371	< 6.662	< 4.399		6.213	9.371	
Biochemical Oxygen Demand: BOD5:																
Raw: Avg BOD5 - Raw Sewage Drayton (mg/L)	426,500	168.500	412.000	285.333	319,500	220.000	325,500	400.000	253.000	227.500	269.500	289.500		299.736	426.500	
Raw: # of samples of BOD5 - Raw Sewage Drayton (mg/	2	2	2	3	2	3	2	2	3	2	2	2	27			
Total Suspended Solids: TSS:																
Raw: Avg TSS - Raw Sewage Drayton (mg/L)	355.000	139.500	380.000	268.000	326.000	176.000	253.500	413.000	256.667	269.500	305.000	340.000		290.181	413.000	
Raw: # of samples of TSS - Raw Sewage Drayton (mg/L)	2	2	2	3	2	3	2	2	3	2	2	2	27			
Eff: Avg TSS - Final Effluent (mg/L)			< 2.000	4.500						4.250	< 4.500	5.000	<	4.050	5.000	
Eff: # of samples of TSS - Final Effluent (mg/L)			3	2						4	4	2	15			
Loading: TSS - Final Effluent (kg/d)			< 5.527	11.488						13.275	< 11.991	10.998	<	10.656	13.275	
Percent Removal: TSS - Final Effluent (mg/L)			99.474	98.321						98.423	98.525	98.529			99.474	
Total Phosphorus: TP:																
Raw: Avg TP - Raw Sewage Drayton (mg/L)	7.405	5.760	6.055	6.647	7.565	6.973	10.560	8.450	6.343	7.090	6.395	6.250		7.124	10.560	
Raw: # of samples of TP - Raw Sewage Drayton (mg/L)	2	2	2	3	2	3	2	2	3	2	2	2	27			
Eff: Avg TP - Final Effluent (mg/L)			0.080	0.055						0.128	0.110	0.155		0.106	0.155	0.5
Eff: # of samples of TP - Final Effluent (mg/L)			3	2						4	4	2	15			
Loading: TP - Final Effluent (kg/d)			0.221	0.140						0.398	0.293	0.341		0.279	0.398	
Percent Removal: TP - Final Effluent (mg/L)			98.679	99.173						98.202	98.280	97.520			99.173	
Nitrogen Series:																
Raw: Avg TKN - Raw Sewage Drayton (mg/L)	60.450	46.700	48.750	59.700	63.050	59.700	76.050	74.050	57.133	69.700	55.300	55.750		60.528	76.050	
Raw: # of samples of TKN - Raw Sewage Drayton (mg/L)	2	2	2	3	2	3	2	2	3	2	2	2	27			
Eff: Avg TAN - Final Effluent (mg/L)			< 0.267 <	0.100					<	0.100	< 0.100	0.150	<	0.143	0.267	5.0
Eff: # of samples of TAN - Final Effluent (mg/L)	-		3	2						4	4	2	15			
Loading: TAN - Final Effluent (kg/d)	-		< 0.737 <	0.255					<	0.312	< 0.266	0.330	<	0.380	0.737	
Disinfection:																
Eff: GMD E. Coli - Final Effluent (cfu/100mL)	-		1.587	2.000						2.000	5.846	2.000		2.687	5.846	
Eff: # of samples of E. Coli - Final Effluent (cfu/100mL)	-		3	2						4	4	2	15			

2021 Annual Performance Report Mapleton Water Pollution Control Plant ECA# 1391-B38PLA August 2, 2018

Appendix B

2022 Sampling Schedule

2021

2022 Drayton Lagoons Sampling Schedule

			-			-				
JANUARY										
S	М	Т	T W T F							
						1				
2	3	4	5	6	7	8				
9	10	11	12	13	14	15				
16	17	18	19	20	21	22				
23	24	25	26	27	28	29				
30	31									

FEBRUARY									
S	М	Т	W	Т	F	S			
		1	2	3	4	5			
6	7	8	9	10	11	12			
13	14	15	16	17	18	19			
20	21	22	23	24	25	26			
27	28								

	MARCH										
S	М	Т	W	Т	F	S					
		1	2	3	4	5					
6	7	8	9	10	11	12					
13	14	15	16	17	18	19					
20	21	22	23	24	25	26					
27	28	29	30	31							

APRIL									
S	М	т w т			F	S			
		1	2						
3	4	5	6	7	8	9			
10	11	12	13	14	15	16			
17	18	19	23	21	22	23			
24	25	26	27	28	29	30			

МАҮ							
S	М	Т	W	Т	F	S	
1	2	3	4	5	6	7	
8	9	10	11	12	13	14	
15	16	17	18	19	20	21	
22	23	24	25	26	27	28	
29	30	31					

JULY								
S	М	Т	W	Т	F	S		
					1	2		
3	4	5	6	7	8	9		
10	11	12	13	14	15	16		
17	18	19	20	21	22	23		
24	25	26	27	28	29	30		
31								

SEPTEMBER							
S	М	Т	W	Т	F	S	
				1	2	3	
4	5	6	7	8	9	10	
11	12	13	14	15	16	17	
18	19	20	21	22	23	24	
25	26	27	28	29	30		

NOVEMBER							
S	М	Т	W	Т	F	S	
		1	2	3	4	5	
6	7	8	9	10	11	12	
13	14	15	16	17	18	19	
20	21	22	23	24	25	26	
27	28	29	30				

JUNE							
S	М	Т	W	Т	F	S	
			1	2	3	4	
5	6	7	8	9	10	11	
12	13	14	15	16	17	18	
19	20	21	22	23	24	25	
26	27	28	29	30			

AUGUST							
S	М	Т	W	Т	F	S	
	1	2	3	4	5	6	
7	8	9	10	11	12	13	
14	15	16	17	18	19	20	
21	22	23	24	25	26	27	
28	29	30	31				

OCTOBER								
S	М	Т	W	Т	F	S		
						1		
2	3	4	5	6	7	8		
9	10	11	12	13	14	15		
16	17	18	19	20	21	22		
23	24	25	26	27	28	29		
30	31							

DECEMBER								
S	М	Т	W	Т	F	S		
				1	2	3		
4	5	6	7	8	9	10		
11	12	13	14	15	16	17		
18	19	20	21	22	23	24		
25	26	27	28	29	30	31		

Weekly Effluent CBOD5, TSS, TP, TAN, *E. Coli,* pH, Temperature, and Uniozed Ammonia Weekly Conestogo River Monitoring BOD5, TSS, TP, TAN, *E. Coli,* pH, and Temperature Bi-weekly Influent BOD5, TSS, TP, and TKN + River & Effluent Sampling Bi-weekly Influent BOD5, TSS, TP, and TKN

CBOD5, TSS, TP, TAN, *E. Coli,* pH (see below)

At least seven (7) days prior to a discharge period, sample each Lagoon Cell Cell Sampling dates subject to change, red box is a warning to ensure sampling completion prior Notes: pH & Temperature of the Final Effluent shall be determined in the field at the

time of sampling for TAN.

Lagoon Cell Sampling

Biosolids Results Four (4) Months prior to haulage.

2021 Annual Performance Report Mapleton Water Pollution Control Plant ECA# 1391-B38PLA August 2, 2018

Appendix C

Calibration Reports

2021

IndusControl Inc. INDUS VERIFICATION REPORT - ROSEMOUNT 151 Superior Blvd, Unit #13 ELECTRO-MAGNETIC FLOW MEASUREMENT Mississauga, ON, L5T 2L1. Customer Name: OCWA-Georgian Highlands Region 7101 Side Road 15, Site/Plant Address: Plant Name: Drayton Lagoon Drayton, ON, N0G 1P0 Service Information **Device Information** Make: Rosemount Date: September 13, 2021 8712D CO1264-2108-45 Model: Report No: Order Code: NA Job No: CO1264-2108 8602203395 Serial No.: NA Tag: Flow Details Lagoon Flow Job Location: Unit: l/sec NA 0-500 (m3/day) Asset ID: Flow Range: 4-20 mA Current Output: Sensor Details 4 mA Set Point 0 8" 20 mA Set Point 25500 Line size: Flow Cal Tube No.: 0979205909737005 Mounting: Remote Inst. Reading AS FOUND AS LEFT TOTALIZER (m3) 2255268 2255269 FLOW (m3/day) 0 0 Maintenance Checklist Remarks ✓ OK □ NOT OK Visual Inspection: □ NOT OK ✓ OK Electrical Inspection: ⊡ ок □ NOT OK Sensor Installation: ⊡ок Transmitter Installation: Instrument Test Information and Results UUT Test-Point as Per Calibration Calculated O/P UUT Display Calculated Flow Deviation Measured KIT (FPS) (FPS) (FPS) (mA) Output (mA) 0.00 0.00 4.00 0.01 3.99 -0.01 3.01 -0.01 3.00 3.00 5.60 5.57 10.00 10.00 9.33 9.98 9.30 0.02 29.97 0.03 30.00 30.00 20.00 19.97 Information of Tools used for Verification of the Instruments Tool/Kit 1 Tool/Kit 2 Tool/Kit 3 Details Electrical Multimeter **Device Description:** Calibrator N/A Rosemount Fluke N/A Manufacturer: 8714D 179 N/A Model No: * Refer Calibration Tools Certificates submittal for more Information \checkmark Not Verified Verification Test Result: Passed Fail Measurement Works within Specification. **Overall Remarks:** Service Technician : **Tushar Patel** Stamp/Signature Printed Date: September 13, 2021

End of Report

Version: 19-12

	IndusControl Inc. 151 Superior Blvd, Uni Mississauga, ON, L5T				ORT- MULTIRANGER 200 FLOW MEASUREMENT
Customer Name: Plant Name:	OCWA-Georgian High Drayton Lagoon	ands Region		Site/Plant Address	7101 Side Road 15, Drayton, ON, N0G 1P0
Make: Model: Order Code:	Device Information Milltronics Multiranger 200 N/A			Date: Report No: Job No:	Service Information September 13, 2021 CO1264-2108-46 CO1264-2108
Serial No.: Tag: Job Location:	PBD/BN210450 NA Lagoon			Unit: Flow Range:	Flow Details m3/hr 0-1382
Inst. Reading TOTALIZER (m3)	<u>AS FOUND</u> 974205.19	<u>AS LEFT</u> 974216.00		Current Output: 4 mA Set Point 20 mA Set Point	4-20 mA 0 1382
Ma	intenance Checklist			R	Remarks
Visual Inspection: Electrical Inspection:	✓ OK ✓ OK	NOT OKNOT OK			
		Programming Para	meter of Inst	trument	
Parameter	Discription	Value	Parameter	Discription	Value
P001	Operation	6.00000	P601	Flow Exponent	1.55
P002	Material	1.000	P602	PMD Dimension	0
P004	Transducer	XPS-10	P603	Maximum Head	0.168 m
P005	Units	1	P604	Maximum Flow	1382
P006	Empty	0.952 m	P605	Zero Head	0.00
P007	Span	0.225 m	P608	Flow rate Units	3.00
P620	Low Flow cuttoff	0.075m	P210	4mA Setpoint	0.00
P600	Primary Mea. Device	7	P211	20mA Setpoint	1382.00
	· · ·	nstrument Test Info	ormation and	Results	<u>+</u>
Input (%)	Calculated Flow(m3/hr)	Calculated Input (mA)	Flow on Scada (m3/hr)	UUT Measured Output (mA)	Deviation (m3/hr)
0	0.00	4.00	0.34	4.00	0.34
25	345.50	8.00	343.68	7.93	-1.82
50	691.00	12.00	689.99	11.99	-1.01
75	1036.50	16.00	1035.89	16.01	-0.61
100	1382.00	20.00	1381.75	19.99	-0.25
	Information	n of Tools used for	Verification	of the Instruments	
Device Description:	Manufac	turer			Model
Electrical Multimeter	Fluke		ates submitta	Il for more Informati	179
Verification Test Result:	Passe			Fail	Not Verified
Overall Remarks:	Program parameters ve	erified. Measureme	nt works as	per specification.	
Service Technician :	Tushar Patel			Stamp/Signature	8
Printed Date:	September 13, 2021				
			End of Repor	rt	Version: 19-12

DTM Version: 3.31.00

Flowmeter Verification Certificate Transmitter

Georgian Highlands Region	Drayton-Lagoon
Customer	Plant
Order code	Tag Name
PROMAG 53 W DN200	1.0526 - 1.0526
Device type	K-Factor
L81D5519000	4
Serial number	Zero point
V2.03.00	V1.06.00
Software Version Transmitter	Software Version I/O-Module
13.09.2021	13:36
Verification date	Verification time

Verification result Transmitter: Passed

Test item	Result	Applied Limits
Amplifier	Passed	Basis: 0.55 %
Current Output 1	Passed	0.05 mA
Pulse Output 1	Not tested	0 P
Test Sensor	Passed	

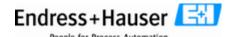
FieldCheck Details	Simubox Details	
551063	8818965	
Production number	Production number	
1.07.10	1.00.01	
Software Version	Software Version	
07/2021	07/2021	
Last Calibration Date	Last Calibration Date	

13.09.2021

Operator's Sign

Inspector's Sign

Overall results:


Date

The achieved test results show that the instrumment is completely functional, and the measuring results lie within +/- 1% of the original calibration. ¹⁾

The calibration of the Fieldcheck test system is fully traceable to national standards.

1) Prerequisite is an additional proof of electrode integrity with a high voltage test.

Page 1/3

FieldCheck - Result Tab Transmitter

Customer	Georgian Highlands Region	Plant	Drayton-Lagoon
Order code		Tag Name	
Device type	PROMAG 53 W DN200	K-Factor	1.0526 - 1.0526
Serial number	L81D5519000	Zero point	4
Software Version Transmitter	V2.03.00	Software Version I/O-Module	V1.06.00
Verification date	13.09.2021	Verification time	13:36

Verification Flow end value ($100\ \%$): 452.389 m3/h Flow speed 4.00 m/s

Passed / Failed	Test item	Test item Simul. Signal		Deviation	
	Test Transmitter				
✓	Amplifier	22.619 m3/h (5%)	1.50 %	0.03 %	
✓		45.239 m3/h (10.0%)	1.00 %	0.06 %	
✓		226.195 m3/h (50.0%)	0.60 %	0.06 %	
		452.389 m3/h (100%)	0.55 %	0.03 %	
√	Current Output 1	4.000 mA (0%)	0.05 mA	-0.001 mA	
✓		4.800 mA (5%)	0.05 mA	-0.001 mA	
<u> </u>		5.600 mA (10.0%)	0.05 mA	-0.012 mA	
<u> </u>		12.000 mA (50.0%)	0.05 mA	0.000 mA	
✓		20.000 mA (100%)	0.05 mA	0.002 mA	
-	Pulse Output 1				
		Start value	Limits range	Measured value	
	Test Sensor				
×	Coil Curr. Rise	13.300 ms	0.00027.625 ms	16.425 ms	
√	Coil Curr. Stability				
	Electrode Integrity	mV	0.0300.000 mV	0.000 mV	

Legend of symbols

	×	-	?	l
Passed	Failed	not tested	not testable	Attention

FieldCheck: Parameters Transmitter

Customer	Georgian Highlands Region	Plant	Drayton-Lagoon
Order code		Tag Name	
Device type	PROMAG 53 W DN200	K-Factor	1.0526 - 1.0526
Serial number	L81D5519000	Zero point	4
Software Version Transmitter	V2.03.00	Software Version I/O-Module	V1.06.00
Verification date	13.09.2021	Verification time	13:36

Curent Output	Assign	Current Range	Value 0_4mA	Value 20 mA	
Terminal 26/27	VOLUME FLOW	4-20 mA activ	0.0 m3/h	200.00 m3/h	
Pulse Output	Assign	Pulse Value	Output signal	Pulse width	
Terminal 24/25	OFF				

Actual System Ident.

125.0

2021 Annual Performance Report Mapleton Water Pollution Control Plant ECA# 1391-B38PLA August 2, 2018

Appendix D

Bypass/Overflow/Spill Incident Report

2021

From:	Melissa Cortes
То:	<u>moe.sac.moe@ontario.ca; Ec.FA-LP-On.ec@canada.ca; "Neubrand, Rick (MECP)"; smattina@mapleton.ca;</u> "jgrose@mapleton.ca"
Cc:	Don Irvine; Karen Lorente; Michelle Neal; Richard Junkin; Karla Young; Dwight Hallahan; Dan Yake; Steve Miller
Subject:	RE: Drayton Lagoon - Environmental Incident Ref.#1-ICVGP
Date:	June-24-21 10:56:00 AM
Attachments:	<u>Drayton Lagoon - Environmental Incident Report - 1-ICVGPP Jun 15, 2021 .pdf</u> <u>CofC CA12612-JUN21.pdf</u> <u>Report CA12612-JUN21.pdf</u> <u>image001.jpg</u>

Good morning,

Please find attached sample results for sample taken June 15, 2021 with regards to the raw sewage spill at the Drayton Lagoon incident 1-ICVGP.

On Friday June 18, 2021 the gravel was scrapped off, disposed of and replaced.

On Monday June 21, 2021 Foster's was onsite and cleaned out the manhole (approx. 3 foot depth) for repairs to be made next day.

On Tuesday June 22, 2021 Wellington Construction was onsite and completed installation of new air relief/back valve and ball valve in the manhole.

Repairs have been completed and a semi-annual maintenance work order has been initiated for the operator to lift the tops of the chamber as well as any other chambers within the system to check equipment inside and have chambers cleaned out if required.

If any further information is required please let me know.

Thank you in advance,

Melíssa Cortes

Process & Compliance Technician Highlands Hub, Georgian Highlands Region 300 Centennial Road Shelburne ON, L9V 3Z4 519-938-6909

?

<Rick.Neubrand@ontario.ca>; smattina@mapleton.ca; 'jgrose@mapleton.ca' <jgrose@mapleton.ca>

Cc: Don Irvine <DIrvine@ocwa.com>; Karen Lorente <KLorente@ocwa.com>; Michelle Neal <MNeal@ocwa.com>; Richard Junkin <RJunkin@ocwa.com>; Karla Young <KYoung@ocwa.com>; Dwight Hallahan <DHallahan@ocwa.com>; Dan Yake <DYake@ocwa.com>; Steve Miller <SMiller@ocwa.com>

Subject: Drayton Lagoon - Environmental Incident Ref.#1-ICVGP

Regarding: Written Notification concerning the Drayton Lagoon Spill on June 15, 2021.

SAC Reference Number: 1-ICVGP

Date: June 15, 2021

Facility: Drayton Lagoon (Moorefield)

Location: 7101 Sideroad 15, Mapleton

Time Started: June 15, 2021 at 10:06AM

Time Ended: June 15, 2021 at 2:00 PM

Duration of Incident: 4 hours

Contents of Spill: Raw Sewage

Volume: 75.71 Litres (approx. 20 gallons)

Location of Release: Onto gravel driveway and grass beside driveway

Description of Incident/Reason for Spill: Rotted air relief valve within a manhole located between the driveways of the farmer and the lagoon access which caused raw sewage to collect in the manhole and spill.

Actions Taken: OCWA collected 3 PET bottles of material to have analyzed as per ECA influent sampling parameters. Foster's Sewer Service sucked out the manhole chamber, ball valve was located and was able to be closed to reduce flow by 98%. There is still some liquid coming out of the valve but is being contained in the manhole chamber. OCWA operator will check levels of chamber to see approximately how long before the chamber will fill and have to be sucked out again. Wellington Construction is locating a replacement for the air relief valve and ball valve.

Samples Collected: Samples taken at site where sewage came up through manholes spilled onto driveway and are being analysed for parameters according to ECA for influent parameters BOD5, TSS, TP and TKN

Reporting: Operator notified Senior Operations Manager of possible spill on June 15, 2021 at 10:06 AM. MECP Inspector was informed June 15, 2021 at 11:29 AM and given update on June 15, 2021 at 4:04PM. SAC notified on June 15, 2021 at 11:45 AM of spill and was given update on June 16, 2021 at 10:56AM.

Please find attached the Environmental Incident Report. An abatement plan will follow that will detail clean-up efforts. Laboratory results from the samples taken will be forwarded when received.

Have a great day,

Melíssa Cortes

Process & Compliance Technician Highlands Hub, Georgian Highlands Region 300 Centennial Road Shelburne ON, L9V 3Z4 519-938-6909

Ontario Clean Water Agency Environmental Incident Report

Facil	ity ID:	6093	EIncidentRep ort		
Facil	Facility Name: Drayton Wastewater Treatment System & Lagoon				
Addr	ess:	7101 Sideroad 15	•		
City:		Mapleton			
Provi	ince:	Ontario			
Posta	l Code:	N0H			
Date	of Occurrence:	06/15/2021			
Time	of Occurrence:	10:06:08 AM			
Nature of	f the Incident				
• Le	evel 1 Contingency	○ Level 2 Contingency ○ Level 3 Contingency Click here To Show	the Definitions		
Incid	ent affected: 🗌 Air	r \Box Water \boxtimes Land \Box Nothing			
Cl Sc Ca Al Al	was discharged or hlorine odium Hypochlorite alcium Chloride luminum Compoun rsenic uoride	 Oil/Diesel/Gas Untreated or partly treated sewage Odours Ods (Specify in Other) Water Iron Coagulants 			
		Other:			
<u>If this wa</u>	s a discharge, spil	l or emission			
If a li	quid, approximatel	y what quantity was released?: 75.71 Litres			
If a g	as, approximately v	what quantity was released?:			
If a so	olid, approximately	what quantity was released?: Kg			
What	was the source of	release?:			
	Rotted air relief va lagoon access.	alve within a manhole located between the driveways of the farmer's field	and the		

Where did the release go?:

Onto the gravel driveway and grass beside driveway

If it entered a watercourse: \bigcirc Yes \bigcirc No

If it went off site: \bullet Yes \bigcirc No

Duration of the release?: <u>4 hours</u>

Is the release now stopped?: \bullet Yes \bigcirc No

Was there any damage? (i.e. property and/or environmental): \bigcirc Yes \bigcirc No \bigcirc N/A

If "Yes", describe below and fill out "Insurance Claim" report

Action(s) Taken

What actions were taken to control the incident?

OCWA collected 3 PET bottles of material to have analyzed as per ECA influent sampling parameters. Foster's Sewer Service sucked out the manhole chamber, ball valve was located and was able to be closed to reduce flow by 98%. There is still some liquid coming out of the valve but is being contained in the manhole chamber. OCWA operator will check levels of chamber to see approximately how long before the chamber will fill and have to be sucked out again. Wellington Construction is locating a replacement for the air relief valve and ball valve.

What actions have been taken to remediate the incident?

OCWA has generated a semi-annual maintenance work order that will require the operator to lift the tops of that chamber as well as any other chambers within the system to check equipment inside and have the chambers sucked out if required.

Was this a reportable spill or discharge?: \bullet Yes \bigcirc No

If "Yes", at what time was it first reported to the MOE?

via email June 15, 2021 at 11:29am, with follow-up/update discissions and emails

Was it reported to the MOE district office?: \bullet Yes \bigcirc No

If "Yes", which office/location and who was the contact?: Guelph District Office - Rick Neubrand

Was it reported to MOE SAC?: \bigcirc Yes \bigcirc No

If "Yes", at what time was it reported to MOE SAC?:

June 15, 2021 at 11:45am - Brenda Catiotiotti

Was it reported to Municipality?: \bigcirc Yes \bigcirc No

If "Yes", at what time was it reported to Municipality?:

Municipality notified OCWA of spill

External Assistance/Involvement

Was corporate or area office assistance requested?: \bigcirc Yes $ullet$ No		
If "Yes", was it received?: \bigcirc Yes \bigcirc No		
Was external emergency assistance requested?: \bigcirc Yes $ullet$ No		
If "Yes", from who?: Ambulance or Hospital MOE Canutec Police Municipality		
Other:		
Was there any media involvment?: \bigcirc Yes $ullet$ No		
If "Yes", who?:		
Was the public affected?: \bigcirc Yes $igodot$ No		
If "Yes", how?:		
Updated By: Melissa Cortes 06/16/2021 12:43:43 PM		

Comments: